Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Carbon and hydrogen isotopes of n-alkanes in soils reconstructed after mining disturbance.

Identifieur interne : 000531 ( Main/Exploration ); précédent : 000530; suivant : 000532

Carbon and hydrogen isotopes of n-alkanes in soils reconstructed after mining disturbance.

Auteurs : Alexia Paul [Canada] ; Sylvie A. Quideau [Canada]

Source :

RBID : pubmed:33016403

Descripteurs français

English descriptors

Abstract

Ecosystem reconstruction after mining disturbance is a challenge considering the multitude of factors that affect soil formation and revegetation. In the boreal forest of western Canada, peat material is often used as the organic amendment for land reclamation to upland forest. Carbon and water dynamics of peat-dominated ecosystems differ from natural upland forest soils. The objective of this work was to evaluate the evolution of soils reconstructed after mining disturbance using 13 C and 2 H analyses of n-alkane tracers. Ten soils from natural ecosystems were sampled (0-10 cm) and compared with 11 soils from novel ecosystems ranging in age from 0 to 30 yr, as well as a fresh peat sample. Soils supported different vegetation, including pine (Pinus spp.), aspen (Populus spp.), and white spruce [Picea glauca (Moench) Voss]. Despite overlaps for some individual n-alkanes, we found a dominance of n-C25 in reconstructed soils, also dominant in the peat material, and a dominance of n-C27 in natural soils, one of the dominant n-alkanes in natural forest vegetation. In addition, there was a significant difference in odd n-alkane δ2 H and δ13 C values between natural and reconstructed soils (p < .05). Differences in δ2 H values, more negative for reconstructed soils than for natural soils, were attributed to changes in soil moisture, from wetter peat-dominated soils to drier upland forests; among forest types, δ2 H values were most negative under pine vegetation. The δ13 C composition of odd n-alkanes, in particular n-C27 , was significantly related to tree age (p < .05). Overall, both 2 H and 13 C isotopic signatures of odd n-alkanes exhibited differences between natural and reconstructed soils. However, within the reconstructed soils, neither isotopic signature showed a clear evolution with age since reclamation.

DOI: 10.1002/jeq2.20069
PubMed: 33016403


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Carbon and hydrogen isotopes of n-alkanes in soils reconstructed after mining disturbance.</title>
<author>
<name sortKey="Paul, Alexia" sort="Paul, Alexia" uniqKey="Paul A" first="Alexia" last="Paul">Alexia Paul</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dep. of Renewable Resources, Univ. of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Dep. of Renewable Resources, Univ. of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3</wicri:regionArea>
<wicri:noRegion>T6G 2E3</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Quideau, Sylvie A" sort="Quideau, Sylvie A" uniqKey="Quideau S" first="Sylvie A" last="Quideau">Sylvie A. Quideau</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dep. of Renewable Resources, Univ. of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Dep. of Renewable Resources, Univ. of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3</wicri:regionArea>
<wicri:noRegion>T6G 2E3</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33016403</idno>
<idno type="pmid">33016403</idno>
<idno type="doi">10.1002/jeq2.20069</idno>
<idno type="wicri:Area/Main/Corpus">000070</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000070</idno>
<idno type="wicri:Area/Main/Curation">000070</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000070</idno>
<idno type="wicri:Area/Main/Exploration">000070</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Carbon and hydrogen isotopes of n-alkanes in soils reconstructed after mining disturbance.</title>
<author>
<name sortKey="Paul, Alexia" sort="Paul, Alexia" uniqKey="Paul A" first="Alexia" last="Paul">Alexia Paul</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dep. of Renewable Resources, Univ. of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Dep. of Renewable Resources, Univ. of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3</wicri:regionArea>
<wicri:noRegion>T6G 2E3</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Quideau, Sylvie A" sort="Quideau, Sylvie A" uniqKey="Quideau S" first="Sylvie A" last="Quideau">Sylvie A. Quideau</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dep. of Renewable Resources, Univ. of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Dep. of Renewable Resources, Univ. of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3</wicri:regionArea>
<wicri:noRegion>T6G 2E3</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of environmental quality</title>
<idno type="eISSN">1537-2537</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alkanes (MeSH)</term>
<term>Canada (MeSH)</term>
<term>Carbon (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Hydrogen (MeSH)</term>
<term>Isotopes (MeSH)</term>
<term>Soil (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alcanes (MeSH)</term>
<term>Canada (MeSH)</term>
<term>Carbone (MeSH)</term>
<term>Hydrogène (MeSH)</term>
<term>Isotopes (MeSH)</term>
<term>Sol (MeSH)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Alkanes</term>
<term>Carbon</term>
<term>Hydrogen</term>
<term>Isotopes</term>
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Canada</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Ecosystem</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alcanes</term>
<term>Canada</term>
<term>Carbone</term>
<term>Hydrogène</term>
<term>Isotopes</term>
<term>Sol</term>
<term>Écosystème</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Canada</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ecosystem reconstruction after mining disturbance is a challenge considering the multitude of factors that affect soil formation and revegetation. In the boreal forest of western Canada, peat material is often used as the organic amendment for land reclamation to upland forest. Carbon and water dynamics of peat-dominated ecosystems differ from natural upland forest soils. The objective of this work was to evaluate the evolution of soils reconstructed after mining disturbance using
<sup>13</sup>
C and
<sup>2</sup>
H analyses of n-alkane tracers. Ten soils from natural ecosystems were sampled (0-10 cm) and compared with 11 soils from novel ecosystems ranging in age from 0 to 30 yr, as well as a fresh peat sample. Soils supported different vegetation, including pine (Pinus spp.), aspen (Populus spp.), and white spruce [Picea glauca (Moench) Voss]. Despite overlaps for some individual n-alkanes, we found a dominance of n-C
<sub>25</sub>
in reconstructed soils, also dominant in the peat material, and a dominance of n-C
<sub>27</sub>
in natural soils, one of the dominant n-alkanes in natural forest vegetation. In addition, there was a significant difference in odd n-alkane δ
<sup>2</sup>
H and δ
<sup>13</sup>
C values between natural and reconstructed soils (p < .05). Differences in δ
<sup>2</sup>
H values, more negative for reconstructed soils than for natural soils, were attributed to changes in soil moisture, from wetter peat-dominated soils to drier upland forests; among forest types, δ
<sup>2</sup>
H values were most negative under pine vegetation. The δ
<sup>13</sup>
C composition of odd n-alkanes, in particular n-C
<sub>27</sub>
, was significantly related to tree age (p < .05). Overall, both
<sup>2</sup>
H and
<sup>13</sup>
C isotopic signatures of odd n-alkanes exhibited differences between natural and reconstructed soils. However, within the reconstructed soils, neither isotopic signature showed a clear evolution with age since reclamation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">33016403</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1537-2537</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>49</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Journal of environmental quality</Title>
<ISOAbbreviation>J Environ Qual</ISOAbbreviation>
</Journal>
<ArticleTitle>Carbon and hydrogen isotopes of n-alkanes in soils reconstructed after mining disturbance.</ArticleTitle>
<Pagination>
<MedlinePgn>688-699</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/jeq2.20069</ELocationID>
<Abstract>
<AbstractText>Ecosystem reconstruction after mining disturbance is a challenge considering the multitude of factors that affect soil formation and revegetation. In the boreal forest of western Canada, peat material is often used as the organic amendment for land reclamation to upland forest. Carbon and water dynamics of peat-dominated ecosystems differ from natural upland forest soils. The objective of this work was to evaluate the evolution of soils reconstructed after mining disturbance using
<sup>13</sup>
C and
<sup>2</sup>
H analyses of n-alkane tracers. Ten soils from natural ecosystems were sampled (0-10 cm) and compared with 11 soils from novel ecosystems ranging in age from 0 to 30 yr, as well as a fresh peat sample. Soils supported different vegetation, including pine (Pinus spp.), aspen (Populus spp.), and white spruce [Picea glauca (Moench) Voss]. Despite overlaps for some individual n-alkanes, we found a dominance of n-C
<sub>25</sub>
in reconstructed soils, also dominant in the peat material, and a dominance of n-C
<sub>27</sub>
in natural soils, one of the dominant n-alkanes in natural forest vegetation. In addition, there was a significant difference in odd n-alkane δ
<sup>2</sup>
H and δ
<sup>13</sup>
C values between natural and reconstructed soils (p < .05). Differences in δ
<sup>2</sup>
H values, more negative for reconstructed soils than for natural soils, were attributed to changes in soil moisture, from wetter peat-dominated soils to drier upland forests; among forest types, δ
<sup>2</sup>
H values were most negative under pine vegetation. The δ
<sup>13</sup>
C composition of odd n-alkanes, in particular n-C
<sub>27</sub>
, was significantly related to tree age (p < .05). Overall, both
<sup>2</sup>
H and
<sup>13</sup>
C isotopic signatures of odd n-alkanes exhibited differences between natural and reconstructed soils. However, within the reconstructed soils, neither isotopic signature showed a clear evolution with age since reclamation.</AbstractText>
<CopyrightInformation>© 2020 The Authors. Journal of Environmental Quality © 2020 American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Paul</LastName>
<ForeName>Alexia</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-1048-8305</Identifier>
<AffiliationInfo>
<Affiliation>Dep. of Renewable Resources, Univ. of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Quideau</LastName>
<ForeName>Sylvie A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Dep. of Renewable Resources, Univ. of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>462352-2014</GrantID>
<Agency>Natural Sciences and Engineering Research Council of Canada</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Canadian Oil Sands Network for Research and Development</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Environ Qual</MedlineTA>
<NlmUniqueID>0330666</NlmUniqueID>
<ISSNLinking>0047-2425</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000473">Alkanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007554">Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7YNJ3PO35Z</RegistryNumber>
<NameOfSubstance UI="D006859">Hydrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000473" MajorTopicYN="N">Alkanes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002170" MajorTopicYN="N" Type="Geographic">Canada</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="Y">Carbon</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006859" MajorTopicYN="N">Hydrogen</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007554" MajorTopicYN="N">Isotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="Y">Soil</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>05</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>8</Hour>
<Minute>43</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33016403</ArticleId>
<ArticleId IdType="doi">10.1002/jeq2.20069</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Adhikari, K., & Hartemink, A. E. (2016). Linking soils to ecosystem services: A global review. Geoderma, 262, 101-111. https://doi.org/10.1016/j.geoderma.2015.08.009</Citation>
</Reference>
<Reference>
<Citation>Alberta Government. (2017). Oil sands facts and stats. Alberta Government. Retrieved from https://open.alberta.ca/publications/oil-sands-facts-and-stats</Citation>
</Reference>
<Reference>
<Citation>Archibald, J. H., & Beckingham, J. D. (1996). Field guide to ecosites of northern Alberta. Edmonton, AB: Canadian Forest Service.</Citation>
</Reference>
<Reference>
<Citation>Baas, M., Pancost, R., van Geel, B., & Sinninghe Damsté, J. S. (2000). A comparative study of lipids in Sphagnum species. Organic Geochemistry, 31, 535-541. https://doi.org/10.1016/S0146-6380(00)00037-1</Citation>
</Reference>
<Reference>
<Citation>Bezabih, M., Pellikaan, W. F., Tolera, A., & Hendriks, W. H. (2011). Evaluation of n-alkanes and their carbon isotope enrichments (δ13C) as diet composition markers. animal, 5, 57-66. https://doi.org/10.1017/S1751731110001515</Citation>
</Reference>
<Reference>
<Citation>Bingham, E. M., McClymont, E. L., Väliranta, M., Mauquoy, D., Roberts, Z., Chambers, F. M., … Evershed, R. P. (2010). Conservative composition of n-alkane biomarkers in Sphagnum species: Implications for palaeoclimate reconstruction in ombrotrophic peat bogs. Organic Geochemistry, 41, 214-220. https://doi.org/10.1016/j.orggeochem.2009.06.010</Citation>
</Reference>
<Reference>
<Citation>Bonan, G. B., & Shugart, H. H. (1989). Environmental factors and ecological processes in boreal forests. Annual Review of Ecology and Systematics, 20, 1-28. https://doi.org/10.1146/annurev.es.20.110189.000245</Citation>
</Reference>
<Reference>
<Citation>Boström, B., Comstedt, D., & Ekblad, A. (2007). Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia, 153, 89-98. https://doi.org/10.1007/s00442-007-0700-8</Citation>
</Reference>
<Reference>
<Citation>Bull, I. D., van Bergen, P. F., Nott, C. J., Poulton, P. R., & Evershed, R. P. (2000). Organic geochemical studies of soils from the Rothamsted classical experiments: V. The fate of lipids in different long-term experiments. Organic Geochemistry, 31, 389-408. https://doi.org/10.1016/S0146-6380(00)00008-5</Citation>
</Reference>
<Reference>
<Citation>Bush, R. T., & McInerney, F. A. (2013). Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. Geochimica et Cosmochimica Acta, 117, 161-179. https://doi.org/10.1016/j.gca.2013.04.016</Citation>
</Reference>
<Reference>
<Citation>Carter, M. R., Gregorich, E. G., Anderson, D. W., Doran, J. W., Janzen, H. H., & Pierce, F. J. (1997). Concepts of soil quality and their significance (pp. 1-19). In E. G. Gregorich & M. R. Carter (Eds.), Soil quality for crop production and ecosystem health. Amsterdam: Elsevier.</Citation>
</Reference>
<Reference>
<Citation>Cayet, C., & Lichtfouse, E. (2001). δ13C of plant-derived n-alkanes in soil particle-size fractions. Organic Geochemistry, 32, 253-258. https://doi.org/10.1016/S0146-6380(00)00172-8</Citation>
</Reference>
<Reference>
<Citation>Chikaraishi, Y., & Naraoka, H. (2001). Organic hydrogen-carbon isotope signatures of terrestrial higher plants during biosynthesis for distinctive photosynthetic pathways. Geochemical Journal, 35, 451-458. https://doi.org/10.2343/geochemj.35.451</Citation>
</Reference>
<Reference>
<Citation>Chikaraishi, Y., & Naraoka, H. (2003). Compound-specific δD-δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry, 63, 361-371. https://doi.org/10.1016/S0031-9422(02)00749-5</Citation>
</Reference>
<Reference>
<Citation>Chikaraishi, Y., & Naraoka, H. (2005). δ13C and δD identification of sources of lipid biomarkers in sediments of Lake Haruna (Japan). Geochimica et Cosmochimica Acta, 69, 3285-3297. https://doi.org/10.1016/j.gca.2005.02.023</Citation>
</Reference>
<Reference>
<Citation>Chikaraishi, Y., & Naraoka, H. (2007). δ13C and δD relationships among three n-alkyl compound classes (n-alkanoic acid, n-alkane and n-alkanol) of terrestrial higher plants. Organic Geochemistry, 38, 198-215. https://doi.org/10.1016/j.orggeochem.2006.10.003</Citation>
</Reference>
<Reference>
<Citation>Cleary, J., Roulet, N. T., & Moore, T. R. (2005). Greenhouse gas emissions from Canadian peat extraction, 1990-2000: A life-cycle analysis. AMBIO: A Journal of the Human Environment, 34, 456-461. https://doi.org/10.1579/0044-7447-34.6.456</Citation>
</Reference>
<Reference>
<Citation>Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133, 1702-1703. https://doi.org/10.1126/science.133.3465.1702</Citation>
</Reference>
<Reference>
<Citation>Del Castillo, J. B., Brooks, C. J. W., Cambie, R. C., Eglinton, G., Hamilton, R. J., & Pellitt, P. (1967). The taxonomic distribution of some hydrocarbons in gymnosperms. Phytochemistry, 6, 391-398. https://doi.org/10.1016/S0031-9422(00)86296-2</Citation>
</Reference>
<Reference>
<Citation>Dimitriu, P. A., Prescott, C. E., Quideau, S. A., & Grayston, S. J. (2010). Impact of reclamation of surface-mined boreal forest soils on microbial community composition and function. Soil Biology & Biochemistry, 42, 2289-2297. https://doi.org/10.1016/j.soilbio.2010.09.001</Citation>
</Reference>
<Reference>
<Citation>Eglinton, G., & Hamilton, R. J. (1967). Leaf epicuticular waxes. Science, 156, 1322-1335. https://doi.org/10.1126/science.156.3780.1322</Citation>
</Reference>
<Reference>
<Citation>Ehleringer, J. R., & Dawson, T. E. (1992). Water uptake by plants: Perspectives from stable isotope composition. Plant, Cell and Environment, 15, 1073-1082. https://doi.org/10.1111/j.1365-3040.1992.tb01657.x</Citation>
</Reference>
<Reference>
<Citation>Francey, R. J., Allison, C. E., Etheridge, D. M., Trudinger, C. M., Enting, I. G., Leuenberger, M., … Steele, L. P. (1999). A 1000-year high precision record of δ13C in atmospheric CO2. Tellus B: Chemical and Physical Meteorology, 51, 170-193. https://doi.org/10.3402/tellusb.v51i2.16269</Citation>
</Reference>
<Reference>
<Citation>Fung, M. Y. P., & Macyk, T. M. (2000). Reclamation of oil sands mining areas. In R. I. Barnhisel, R. G. Darmody, & W. L. Daniels (Eds.), Reclamation of drastically disturbed lands (pp. 755-774). Madison, WI: ASA, CSSA, and SSSA.</Citation>
</Reference>
<Reference>
<Citation>Glendell, M., Jones, R., Dungait, J. A. J., Meusburger, K., Schwendel, A. C., Barclay, R., … Meersmans, J. (2018). Tracing of particulate organic C sources across the terrestrial-aquatic continuum, a case study at the catchment scale (Carminowe Creek, southwest England). Science of the Total Environment, 616-617, 1077-1088. https://doi.org/10.1016/j.scitotenv.2017.10.211</Citation>
</Reference>
<Reference>
<Citation>Hahn, A. S., & Quideau, S. A. (2013). Long-term effects of organic amendments on the recovery of plant and soil microbial communities following disturbance in the Canadian boreal forest. Plant and Soil, 363, 331-344. https://doi.org/10.1007/s11104-012-1306-4</Citation>
</Reference>
<Reference>
<Citation>Hayes, J. M., Freeman, K. H., Popp, B. N., & Hoham, C. H. (1990). Compound-specific isotopic analyses: A novel tool for reconstruction of ancient biogeochemical processes. Organic Geochemistry, 16, 1115-1128. https://doi.org/10.1016/0146-6380(90)90147-R</Citation>
</Reference>
<Reference>
<Citation>Krull, E. S., Sachse, D., Mugler, I., Thiele, A., & Gleixner, G. (2006). Compound-specific δ13C and δ2H analyses of plant and soil organic matter: A preliminary assessment of the effects of vegetation change on ecosystem hydrology. Soil Biology and Biochemistry, 38, 3211-3221. https://doi.org/10.1016/j.soilbio.2006.04.008</Citation>
</Reference>
<Reference>
<Citation>Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528, 60-68. https://doi.org/10.1038/nature16069</Citation>
</Reference>
<Reference>
<Citation>Lerch, T. Z., Nunan, N., Dignac, M.-F., Chenu, C., & Mariotti, A. (2011). Variations in microbial isotopic fractionation during soil organic matter decomposition. Biogeochemistry, 106, 5-21. https://doi.org/10.1007/s10533-010-9432-7</Citation>
</Reference>
<Reference>
<Citation>Lichtfouse, É., Bardoux, G., Mariotti, A., Balesdent, J., Ballentine, D. C., & Macko, S. A. (1997). Molecular, 13C, and 14C evidence for the allochthonous and ancient origin of C16-C18 n-alkanes in modern soils. Geochimica et Cosmochimica Acta, 61, 1891-1898. https://doi.org/10.1016/S0016-7037(97)00021-5</Citation>
</Reference>
<Reference>
<Citation>Liu, W., Yang, H., Wang, H., An, Z., Wang, Z., & Leng, Qin (2015). Carbon isotope composition of long chain leaf wax n-alkanes in lake sediments: A dual indicator of paleoenvironment in the Qinghai-Tibet Plateau. Organic Geochemistry, 83-84, 190-201. https://doi.org/10.1016/j.orggeochem.2015.03.017</Citation>
</Reference>
<Reference>
<Citation>Lourantou, A., Lavrič, J. V., Köhler, P., Barnola, J.-M., Paillard, D., Michel, E., … Chappellaz, J. (2010). Constraint of the CO2 rise by new atmospheric carbon isotopic measurements during the last deglaciation. Global Biogeochemical Cycles, 24(2). https://doi.org/10.1029/2009GB003545</Citation>
</Reference>
<Reference>
<Citation>Macdonald, E., Quideau, S., & Landhäusser, S. (2012). Rebuilding boreal forest ecosystems after industrial disturbance. In D. Vitt & J. Bhatto (Eds.), Restoration and reclamation of boreal ecosystems: Attaining sustainable development (pp. 123-160). https://doi.org/10.1017/CBO9781139059152.010</Citation>
</Reference>
<Reference>
<Citation>Mead, R., Xu, Y., Chong, J., & Jaffé, R. (2005). Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes. Organic Geochemistry, 36, 363-370. https://doi.org/10.1016/j.orggeochem.2004.10.003</Citation>
</Reference>
<Reference>
<Citation>Mummey, D. L., Stahl, P. D., & Buyer, J. S. (2002). Microbial biomarkers as an indicator of ecosystem recovery following surface mine reclamation. Applied Soil Ecology, 21, 251-259. https://doi.org/10.1016/S0929-1393(02)00090-2</Citation>
</Reference>
<Reference>
<Citation>Norris, C. E., Dungait, J. A. J., Joynes, A., & Quideau, S. A. (2013). Biomarkers of novel ecosystem development in boreal forest soils. Organic Geochemistry, 64, 9-18. https://doi.org/10.1016/j.orggeochem.2013.08.014</Citation>
</Reference>
<Reference>
<Citation>Pedentchouk, N., Sumner, W., Tipple, B., & Pagani, M. (2008). δ13C and δD compositions of n-alkanes from modern angiosperms and conifers: An experimental set up in central Washington State, USA. Organic Geochemistry, 39, 1066-1071. https://doi.org/10.1016/j.orggeochem.2008.02.005</Citation>
</Reference>
<Reference>
<Citation>Powter, C., Chymko, N., Dinwoodie, G., Howat, D., Janz, A., Puhlmann, R., … Dyer, R. (2012). Regulatory history of Alberta's industrial land conservation and reclamation program. Canadian Journal of Soil Science, 92, 39-51. https://doi.org/10.4141/cjss2010-033</Citation>
</Reference>
<Reference>
<Citation>Quideau, S. A., Norris, C. E., Rees, F., Dyck, M., Samadi, N., & Oh, S.-W. (2017). Carbon, nitrogen, and phosphorus release from peat and forest floor-based cover soils used during oil sands reclamation. Canadian Journal of Soil Science, 97, 757-768. https://doi.org/10.1139/cjss-2017-0037</Citation>
</Reference>
<Reference>
<Citation>Quideau, S. A., Swallow, M. J. B., Prescott, C. E., Grayston, S. J., & Oh, S.-W. (2013). Comparing soil biogeochemical processes in novel and natural boreal forest ecosystems. Biogeosciences, 10, 5651-5661. https://doi.org/10.5194/bg-10-5651-2013</Citation>
</Reference>
<Reference>
<Citation>Rao, Z., Jia, G., Qiang, M., & Zhao, Y. (2014). Assessment of the difference between mid- and long chain compound specific δDn-alkanes values in lacustrine sediments as a paleoclimatic indicator. Organic Geochemistry, 76, 104-117. https://doi.org/10.1016/j.orggeochem.2014.07.015</Citation>
</Reference>
<Reference>
<Citation>Rowe, J. S., & Scotter, G. W. (1973). Fire in the boreal forest. Quaternary Research, 3, 444-464. https://doi.org/10.1016/0033-5894(73)90008-2</Citation>
</Reference>
<Reference>
<Citation>Rumpel, C., & Kögel-Knabner, I. (2003). Characterisation of organic matter and carbon cycling in rehabilitated lignite-rich mine soils. Water, Air, & Soil Pollution: Focus, 3, 153-166. https://doi.org/10.1023/A:1022144513084</Citation>
</Reference>
<Reference>
<Citation>Sachse, I. B., Bowen, G. J., Chikaraishi, Y., Dawson, T. E., Feakins, S. J., … Kahmen, A. (2012). Molecular paleohydrology: Interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annual Review of Earth and Planetary Sciences, 40, 221-249. https://doi.org/10.1146/annurev-earth-042711-105535</Citation>
</Reference>
<Reference>
<Citation>Sachse, D., Radke, J., & Gleixner, G. (2004). Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability. Geochimica et Cosmochimica Acta, 68, 4877-4889. https://doi.org/10.1016/j.gca.2004.06.004</Citation>
</Reference>
<Reference>
<Citation>Sauer, P. E., Eglinton, T. I., Hayes, J. M., Schimmelmann, A., & Sessions, A. L. (2001). Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geochimica et Cosmochimica Acta, 65, 213-222. https://doi.org/10.1016/S0016-7037(00)00520-2</Citation>
</Reference>
<Reference>
<Citation>Schimmelmann, A., Qi, H., Coplen, T. B., Brand, W. A., Fong, J., Meier-Augenstein, W., … Werner, R. A. (2016). Organic reference materials for hydrogen, carbon, and nitrogen stable isotope-ratio measurements: Caffeines, n-alkanes, fatty acid methyl esters, glycines, l-valines, polyethylenes, and oils. Analytical Chemistry, 88, 4294-4302. https://doi.org/10.1021/acs.analchem.5b04392</Citation>
</Reference>
<Reference>
<Citation>Seki, O., Nakatsuka, T., Shibata, H., & Kawamura, K. (2010). A compound-specific n-alkane δ13C and δD approach for assessing source and delivery processes of terrestrial organic matter within a forested watershed in northern Japan. Geochimica et Cosmochimica Acta, 74, 599-613. https://doi.org/10.1016/j.gca.2009.10.025</Citation>
</Reference>
<Reference>
<Citation>Sessions, A. L., Burgoyne, T. W., Schimmelmann, A., & Hayes, J. M. (1999). Fractionation of hydrogen isotopes in lipid biosynthesis. Organic Geochemistry, 30, 1193-1200. https://doi.org/10.1016/S0146-6380(99)00094-7</Citation>
</Reference>
<Reference>
<Citation>Soil Classification Working Group. (1998). The Canadian system of soil classification (3rd ed.). Ottawa, ON, Canada: NRC Research Press.</Citation>
</Reference>
<Reference>
<Citation>Sorenson, P. T., Quideau, S. A., MacKenzie, M. D., Landhäusser, S. M., & Oh, S. W. (2011). Forest floor development and biochemical properties in reconstructed boreal forest soils. Applied Soil Ecology, 49, 139-147. https://doi.org/10.1016/j.apsoil.2011.06.006</Citation>
</Reference>
<Reference>
<Citation>Turcotte, I., Quideau, S. A., & Oh, S.-W. (2009). Organic matter quality in reclaimed boreal forest soils following oil sands mining. Organic Geochemistry, 40, 510-519. https://doi.org/10.1016/j.orggeochem.2009.01.003</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Paul, Alexia" sort="Paul, Alexia" uniqKey="Paul A" first="Alexia" last="Paul">Alexia Paul</name>
</noRegion>
<name sortKey="Quideau, Sylvie A" sort="Quideau, Sylvie A" uniqKey="Quideau S" first="Sylvie A" last="Quideau">Sylvie A. Quideau</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000531 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000531 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33016403
   |texte=   Carbon and hydrogen isotopes of n-alkanes in soils reconstructed after mining disturbance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33016403" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020